2. (8 marks)
 a) (5 marks) Give a pseudocode description of the algorithm implemented in your solution for Question #1.
 b) (3 marks) Derive the worst-case asymptotic, i.e., big-Oh, running time of your algorithm for Question #1.

2. (32 marks) Consider the following edge-weighted directed graph:

 a) (8 marks) Run Dijkstra’s algorithm (p. 595) on the directed graph above using vertex v as the source vertex. In the style of Figure 24.6 in the textbook, show the d and π values and the vertices in set S after each iteration of the while loop.

 b) (8 marks) Run the Bellman-Ford algorithm (p. 588) on the directed graph above using vertex v as the source vertex. Relax edges in lexicographic order in each pass, and in the style of Figure 24.4 on the textbook, show the d and π values after each pass. Finally, please give the boolean value returned by the algorithm.

 c) (8 marks) Re-do part (a) with the weight of arc (x,v) reset to -6.

 d) (8 marks) Re-do part (b) with the weight of arc (x,v) reset to -6.
3. **(10 marks)** Consider the following problem:

Dumbbell Subgraph (DS)

Input: An undirected graph $G = (V, E)$ and two positive integers $k, l \geq 1$.

Question: Are there two cliques C_1 and C_2 and a simple path P in G such that C_1 and C_2 have $\geq k$ vertices apiece, P has $\geq l$ edges, P connects C_1 and C_2, the cliques and path do not have any edges in common, and the only vertices that P shares with C_1 (C_2) is its connection-vertex?

Prove that this problem is NP-complete by (1) showing that this problem is in NP and (2) giving a polynomial-time many-one reduction (algorithm + proof of correctness) to this problem from an NP-hard problem.