Designing Brooks-style Subsumption Swarms

Todd Wareham

Department of Computer Science
Memorial University of Newfoundland

October 14, 2013
Dagstuhl Seminar 1124
Introduction

- Many design methodologies proposed (Crespi et al, 2008; Brambilla et al, 2012), e.g.,
 - temporal-logic decomposition (Winfield et al, 2005a)
 - dataflow diagram decomposition (Winfield et al, 2005b)
 - interaction-graph decomposition (Wiegand et al, 2006)
 - evolutionary algorithm (Sperati et al, 2011)
- All existing methods inadequate.
Defining Swarms:
Swarm Entity Architecture

Our reactive robot will be a simplified Brooks-style architecture [?] consisting of sensors, a set of layers, a total ordering on these layers, and a set of subsumption connections between layers. These components are specified as follows:

- The sensors can see outwards in a radius r around the robot in every direction up to the closest obstacle in that direction, and can verify, for each square-type $e \in E$, the presence of e at any specified position pos within that perceptual radius, i.e., $\exists(pos, e)$. Each robot also has a compass that allows it to orient itself relative to the north-south and east-west axes.

- Each layer has a trigger-condition that is a Boolean formula over the available sensory \exists-predicates and an action $a \in \{N, S, E, W\}$. If a layer’s formula evaluates to $True$, the layer produces output a; otherwise, it produces the special output null. Given a set of layers L, we will assume that the formula in each layer has length at most f and no two layers compute the same Boolean function and produce the same output.
Make Me Work Late Will You
Defining Swarms: Swarm Entity Architecture

- Relative to the total order on the layers, a layer i can have subsumption links to any layer j that is lower than i in the ordering; between any two layers, there can exist an output-inhibition or output-override link (but not both). An output-inhibition link from a layer L to a layer L' makes the output of L' null if the output of L is non-null. The set of output-override links to a layer L' are assumed to be in a total order, and the output of L' is either the value of the highest non-null layer-override link in the total order, if there is an output override link whose value is non-null, and the output specified by L' otherwise. The output of any layer that subsumes at least one lower-level layer is not available directly for output; otherwise, that layer’s output is available.

The output of a set of ordered layers with subsumption links will be that of the highest layer relative to the order that is both available and non-null.
Defining Swarms: Overall Swarm Architecture

- Restrictions (this talk):
 - Synchronized entity movement.
 - No inter-entity communication.
 - No movement conflict allowed.

- Modifications:

 Selection: Add / delete up to \(c \) entities (relative to provided entity library \(A \))
Defining Swarm Design

SWARM NAVIGATION WITH X

Input: World W, swarm S, start and finish points s and d in W, integer c.

Output: A swarm S' derived by at most c modifications of type X from S that can move conflict-free from s to d, if such an S' exists, and special symbol \perp otherwise.
Defining Swarm Design (Cont’d)

- **Given Swarm Navigation (GSN)**
 Given \(W, S, \) start-position \(s \) and destination-area \(d \), can \(S \) get from \(s \) to \(d \)?

- **Selected Swarm Navigation (SSN)**
 Given \(W, |S|, A, \) and areas \(s \) and \(d \), derive \(S \) and position of \(S \) in \(s \) such that \(S \) can get from \(s \) to \(d \).

- **Given Swarm Navigation with Rec. (GSN-REC)**
 Given \(W, S, M, \) start-position \(s \) and destination-area \(d \), derive \(S' \) from \(S \) wrt \(M \) such that \(S' \) can get from \(s \) to \(d \).

- **Selected Swarm Navigation with Rec. (GSN-REC)**
 Given \(W, |S|, A, M, \) and areas \(s \) and \(d \), derive \(S \) wrt \(A \) and \(M \) and position of \(S \) in \(s \) such that \(S \) can get from \(s \) to \(d \).
Computational Complexity Analysis

- A problem Π is poly-time solvable if Π is solvable in time n^c for input size n and constant c.
- In Computer and Cognitive Science, efficient solvability = poly-time solvability (see van Rooij (2008) and references).
- Basic questions about a computational problem C:
 1. Is C hard, i.e., is C poly-time solvable?
 2. If so, what can we restrict to make C easy, i.e., (effectively) poly-time solvable?
- Use classical complexity to show problem is not poly-time solvable, i.e., NP-hardness (Garey and Johnson, 1979).
Computational Complexity Analysis (Cont’d)

Definition
Let Π be a problem with parameters k_1, k_2, \ldots. Then Π is said to be **fixed-parameter (fp-) tractable** for parameter-set $K = \{k_1, k_2, \ldots\}$ if there exists at least one algorithm that solves Π for any input of size n in time $f(k_1, k_2, \ldots)n^c$, where $f(\cdot)$ is an arbitrary function and c is a constant. If no such algorithm exists then Π is said to be **fixed-parameter (fp-) intractable** for parameter-set K.

Lemma
[?, Lemma 2.1.30] If problem Π is fp-tractable relative to parameter-set K then Π is fp-tractable for any parameter-set K' such that $K \subset K'$.

Lemma
[?, Lemma 2.1.31] If problem Π is fp-intractable relative to parameter-set K then Π is fp-intractable for any parameter-set K' such that $K' \subset K$.
Computer Networks: Commercialization (Cont’d)
<table>
<thead>
<tr>
<th>Category</th>
<th>tractable</th>
<th>intractable</th>
</tr>
</thead>
<tbody>
<tr>
<td>classical</td>
<td>(n^c)</td>
<td>(NP)-hard)</td>
</tr>
<tr>
<td>parameterized</td>
<td>(f(p) \times n^c)</td>
<td>(W)-hard)</td>
</tr>
</tbody>
</table>
Complexity of Swarm Design

- Main results:
 - SSN, GSN-REC, and SSN-REC are poly-time intractable.

- Implications:
 - Swarm design problems are intractable in general (as GSN is not so much swarm design as swarm verification).
 - Need to restrict these problems if we are to get tractability.
Complexity of Swarm Design (Cont’d)

| | \(|L| \) | \(|E| \) | \(f \) | \(r \) | \(|S| \) | \(h \) | \(|A| \) | \(|M| \) |
|----------------|--------|--------|--------|--------|--------|--------|--------|--------|
| **SRSM** | | | | | | | | |
| B | 4 | 5 | - | - | \(p \) | 1 | 1 | X |
| C | 3 | - | 13 | 2 | \(p \) | \(p \) | - | X |
| D | 3 | 5 | - | - | \(p \) | \(p \) | - | X |
| **GRSMR** | | | | | | | | |
| B | 3 | 3 | - | - | - | 2 | \(X \) | 1 |
| C | 4 | - | 13 | 2 | \(p \) | \(p \) | \(X \) | - |
| D | 4 | 5 | - | - | \(p \) | \(p \) | \(X \) | - |
| E | \(p \) | - | 1 | 0 | 1 | 1 | \(X \) | - |
| F | \(p \) | 5 | - | - | 1 | 1 | \(X \) | - |
| G | - | - | 3 | 1 | 1 | 1 | \(X \) | 0 |
| H | - | 5 | - | - | 1 | 1 | \(X \) | 0 |
| **SRSMR** | | | | | | | | |
| B | 4 | 5 | - | - | \(p \) | 1 | 1 | 0 |
| C | 3 | - | 13 | 2 | \(p \) | \(p \) | - | 0 |
| D | 3 | 5 | - | - | \(p \) | \(p \) | - | 0 |
| E | \(p \) | - | 1 | 0 | 1 | 1 | 1 | - |
| F | \(p \) | 5 | - | - | 1 | 1 | 1 | - |
| G | - | - | 3 | 1 | 1 | 1 | 1 | 0 |
| H | - | 5 | - | - | 1 | 1 | 1 | 0 |
Future Work

- Extend parameterized analysis to other aspects, *e.g.*, perceptual radius.
- Analyze swarm design relative to other types of worlds, tasks, and architectures.
- Investigate related problems, *e.g.*, reactive morphogenesis.